Motivation Formalism Results	Summary	HADRONS	UNI GRAZ
------------------------------	---------	---------	-------------

Axial properties of N and N* resonances

Ki-Seok Choi, W. Plessas, and R.F. Wagenbrunn

Karl-Franzens-Universität Graz, Austria

How about resonant states N*?

Recently, attracted much interest in studies of the strong interactions (QCD).

Chiral Restoration Scenario of QCD

L.Ya. Glozman: Phys. Rev. Lett. 99, 191602 (2007)

Requirement for restoration : $g_A \simeq 0$

Analytic and Lattice Results

L.Ya. Glozman, A.V. Nefediev: Nucl. Phys. A 807, 38 (2008)

Toru T. Takahashi and Teiji Kunihiro: Phys. Rev. D 78, 011503 (2008)

Relativistic Constituent Quark Model

• Framework: Relativistic Quantum Mechanics (RQM)

i.e. quantum theory respecting Poincaré invariance (theory on \mathcal{H} corresponding to a finite number of particles, not a field theory)

Invariant mass operator

$$\hat{M} = \hat{M}_{free} + \hat{M}_{int} = \sqrt{\hat{H}_{0}^{2} - \hat{\vec{P}}_{free}^{2}} + \sum_{i < j} \left[\hat{V}_{ij}^{conf} + \hat{V}_{ij}^{hf} \right]$$

Eigenvalue equation : $\hat{M}|P, J, \Sigma\rangle = m|P, J, \Sigma\rangle$ Relativistic kinetic energy : $H_0 = \sum_{i=1}^3 \sqrt{\vec{p}_i^2 + m_i^2}$ Confinement : $\hat{V}_{ij}^{conf} = V_0 + Cr_{ij}$ Hyperfine interaction \hat{V}_{ij}^{hf} : OGE, psGBE, EGBE

Axial Form Factors

Matrix elements of the axial current operator

 $\left|\left\langle P, \frac{1}{2}, \Sigma' \left| \hat{A}_a^{\mu} \right| P, \frac{1}{2}, \Sigma \right\rangle \right| = \bar{U}(P, \Sigma') g_A \gamma^{\mu} \gamma_5 \frac{\tau_a}{2} U(P, \Sigma)$ g_A : Axial charge of N and N* $\left\langle P, \frac{3}{2}, \Sigma' \left| \hat{A}^{\mu}_{a} \right| P, \frac{3}{2}, \Sigma \right\rangle = \bar{U}^{\nu}(P, \Sigma') g_{A} \gamma^{\mu} \gamma_{5} \frac{\tau_{a}}{2} U_{\nu}(P, \Sigma)$ $\left\langle P, \frac{5}{2}, \Sigma' \left| \hat{A}^{\mu}_{a} \right| P, \frac{5}{2}, \Sigma \right\rangle = \bar{U}^{\nu\lambda}(P, \Sigma') g_{A} \gamma^{\mu} \gamma_{5} \frac{\tau_{a}}{2} U_{\nu\lambda}(P, \Sigma)$ Incoming / Outgoing baryon states : $|V, M, J, \Sigma\rangle = |P, J, \Sigma\rangle$ $\langle V, M, J, \Sigma \left| \hat{A}_a^{\mu} \right| V, M, J, \Sigma \rangle = \frac{2}{MM'} \sum_{a'} \sum_{a'} \int d^3 \vec{k}_2 d^3 \vec{k}_3 d^3 \vec{k}_2' d^3 \vec{k}_3'$ $\times \sqrt{\frac{\left(\sum_{i} \omega_{i}^{\prime}\right)^{3}}{\prod_{i} 2\omega_{i}^{\prime}}} \prod_{i} D_{\sigma_{i}^{\prime}\mu_{i}^{\prime}}^{*\frac{1}{2}} \left\{ R_{W}[k_{i}^{\prime}; B(V^{\prime})] \right\} \Psi_{M^{\prime}J^{\prime}\Sigma^{\prime}}^{*} \left(\vec{k_{1}^{\prime}}, \vec{k_{2}^{\prime}}, \vec{k_{3}^{\prime}}; \mu_{1}^{\prime}, \mu_{2}^{\prime}, \mu_{3}^{\prime} \right) \left(\langle p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}; \sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \sigma_{3}^{\prime} \left| \hat{A}_{a,rd}^{\mu} \right| p_{1}, p_{2}, p_{3}; \sigma_{1}, \sigma_{2}, \sigma_{3} \rangle$ $\times \sqrt{\frac{\left(\sum_{i} \omega_{i}\right)^{3}}{\prod_{i} 2\omega_{i}}} \prod D_{\sigma_{i}\mu_{i}}^{\frac{1}{2}} \left\{ R_{W}[k_{i}; B(V)] \right\} \Psi_{MJ\Sigma} \left(\vec{k_{1}}, \vec{k_{2}}, \vec{k_{3}}; \mu_{1}, \mu_{2}, \mu_{3}\right) \quad 2MV_{0}\delta^{3} \left(M\vec{V} - M'\vec{V'} - \vec{q}\right)$ where $p_i = B_c(V)k_i, \ p'_i = B_c(V')k'_i$ and $w_i = \sqrt{k_i^2 + m_i^2}$

Point Form Spectator Model

Point form spectator model

$$\begin{aligned} &\langle p_1', p_2', p_3'; \sigma_1', \sigma_2', \sigma_3' \left| \hat{O}_{rd} \right| p_1, p_2, p_3; \sigma_1, \sigma_2, \sigma_3 \rangle \\ &= 3N \langle p_1', \sigma_1' \left| \hat{O}_{spec} \right| p_1, \sigma_1 \rangle 2p_{20} \delta \left(\vec{p_2} - \vec{p_2'} \right) 2p_{30} \delta \left(\vec{p_3} - \vec{p_3'} \right) \delta_{\sigma_2 \sigma_2'} \delta_{\sigma_3 \sigma_3'} \end{aligned}$$

• Axial current

$$\langle p_1', \sigma_1' | \hat{A}_{a,spec}^{\mu} | p_1, \sigma_1 \rangle = \bar{u}(p_1', \sigma_1') \left[g_A^q \gamma^{\mu} + \frac{2f_\pi}{\tilde{Q}^2 + m_\pi^2} g_{qq\pi} \tilde{q}^{\mu} \right] \gamma_5 \frac{\tau_a}{2} u(p_1, \sigma_1)$$

 $g_A^q = 1$ (pointlike constituent quark)

- Axial form factors of N
- Axial charges of N and some N* relative to other results
- Axial charges of all N* resonances below 2 GeV
- Axial form factors of N*

Axial and Pseudo-scalar Form Factors of nucleon

L.Ya. Glozman, M.Radici, R.F.Wagenbrunn, S. Boffi, W. Klink, and W. Plessas: Phys. Lett. B 516, 183 (2001)

Motivation	Formalism	Results	Summary	HADRONS	UNI GRAZ

Comparison

State	J^P	EGBE	3 Lattice QCD	${ m GN}^2$	NR
N(939)	$\frac{1}{2}^{+}$	1.15	$1.10 \sim 1.40$	1.66	1.65
$N^{*}(1440)$	$\frac{1}{2}^{+}$	1.16		1.66	1.61
$N^{*}(1535)$	$\frac{1}{2}^{-}$	0.02	~ 0.00	-0.11	-0.20
$N^{*}(1710)$	$\frac{1}{2}^{+}$	0.35		0.33	0.42
$N^{*}(1650)$	$\frac{1}{2}^{-}$	0.51	~ 0.55	0.55	0.64

- I. K. S. Choi, W. Plessas, R. F. Wagenbrunn : Phys. Rev. C 81, 028201 (2010)
- 2. L.Ya. Glozman, A.V. Nefediev: Eur. Phys. J.A 12, 91 (2001)
- 3. Toru T. Takahashi and Teiji Kunihiro : Phys. Rev. D 78, 01 1503 (2008) and further lattice QCD calculation

Axial Charges of Chiral Partners

	EGBE	psGBE	OGE
State J^p	Mass g_A	Mass g_A	Mass g_A
$N(939) = \frac{1}{2}^+$	939 1.15	939 1.15	939 1.11
$N^*(1520) \frac{3}{2}^-$	1524 -0.64	1519 -0.21	1520 -0.15
$N^*(1440) \frac{1}{2}^+$	$1464 \ 1.16$	1459 1.13	$1578 \ 1.10$
$N^*(1535) \frac{1}{2}^-$	1498 0.02	1519 0.09	1520 0.13
$N^*(1680) \frac{5}{2}^+$	1689 0.89	1728 0.83	1858 0.70
$N^*(1675) \frac{5}{2}^-$	1676 0.84	1647 0.83	1690 0.80
$N^*(1710) \frac{1}{2}^+$	1757 0.35	1776 0.37	1860 0.32
$N^*(1650) \frac{1}{2}^-$	1581 0.51	1647 0.46	1690 0.44
$N^*(1720) \frac{3}{2}^+$	1746 0.35	1728 0.34	1858 0.25
$N^*(1700) \frac{3}{2}^-$	1608 -0.10	1647 - 0.50	1690 -0.47

Classification

(L)	$S)J^P$				
$(0\frac{1}{2})$	$(\frac{1}{2})\frac{1}{2}^{+}$	$N(939)^{100}$	$\Lambda(1116)^{100}$	$\Sigma(1193)^{100}$	$\Xi(1318)^{100}$
$(0\frac{1}{2})$	$(\frac{1}{2})\frac{1}{2}^+$	$N(1440)^{100}$	$\Lambda(1600)^{96}$	$\Sigma(1660)^{100}$	$\Xi(1690)^{100}$
$(0\frac{1}{2})$	$(\frac{1}{2})\frac{1}{2}^{+}$	$N(1710)^{100}$		$\Sigma(1880)^{99}$	
$(1\frac{1}{2})$	$(\bar{1}_{2})^{\bar{1}_{2}}$	$N(1535)^{100}$	$\Lambda(1670)^{72}$	$\Sigma(1560)^{94}$	
$(1\frac{2}{2})$	$(\frac{3}{2})^{\frac{1}{2}}$	$N(1650)^{100}$	$\Lambda(1800)^{100}$	$\Sigma(1620)^{100}$	
$(1\frac{1}{2})$	$(\frac{1}{2})^{\frac{3}{2}}$	$N(1520)^{100}$	$\Lambda(1690)^{72}$	$\Sigma(1670)^{94}$	$\Xi(1820)^{97}$
$(1\frac{2}{2})$	$(\frac{3}{2})\frac{3}{2}^{-}$	$N(1700)^{100}$		Σ(1940) ¹⁰⁰	
$(1\frac{2}{2})$	$(\frac{3}{2})\frac{5}{2}^{-}$	$N(1675)^{100}$	$\Lambda(1830)^{100}$	$\Sigma(1775)^{100}$	$\Sigma(1950)^{100}$
		D			
	(LS)J	P			
	$(0\frac{3}{2})\frac{3}{2}$	$\Delta(1232)^{100}$	$\Sigma(1385)^{100}$	$\Xi(1530)^{100}$	$\Omega(1672)^{100}$
	$(0\frac{3}{2})\frac{3}{2}$	$\Delta (1600)^{100}$	Σ (1690) ⁹⁹		
	$(1\frac{1}{2})\frac{1}{2}$	$\Delta(1620)^{100}$	Σ (1750) ⁹⁴		
	$(1\frac{1}{2})\frac{3}{2}$	$\Delta(1700)^{100}$			

K. S. Choi, W. Plessas, R. F. Wagenbrunn : Phys. Rev. D 82, 014007 (2010)

T. Melde, W. Plessas and B. Sengl: Phys. Rev. D 77, 114002 (2008) and Particle Data Group (PDG) 2010

Classification

(L)	$S)J^P$						
(0)	$(\frac{1}{2})\frac{1}{2}^+$	N(939))100	Λ(1116)) ¹⁰⁰	$\Sigma(1193)^{100}$	$\Xi(1318)^{100}$
(0	$(\frac{1}{2})\frac{1}{2}^{+}$	N(1440)) ¹⁰⁰	$\Lambda(1600$) ⁹⁶	$\Sigma(1660)^{100}$	$\Xi(1690)^{100}$
(0)	$(\frac{1}{2})\frac{1}{2}^{+}$	N(1710)) ¹⁰⁰	0.02		$\Sigma(1880)^{99}$	
(1)	$(\frac{1}{2})\frac{1}{2}^{-}$	N(1535	$(5)^{100}$	$\Lambda(1670$)72	$\Sigma(1560)^{94}$	-0.15
(1 = 1)	$\frac{3}{2})\frac{1}{2}^{-}$	N(1650	$))^{100}$	$\Lambda(1800)$	$)^{100}$	$\Sigma(1620)^{100}$	
(1,	$\frac{1}{2})\frac{3}{2}^{-}$	N(1520)) ¹⁰⁰	$\Lambda(1690$	$)^{72}$	$\Sigma(1670)^{94}$	$\Xi(1820)^{97}$
(1)	$(\bar{3})^{\bar{3}}_{2}$	N(1700)) ¹⁰⁰			$\Sigma(1940)^{100}$)
(1	$(\frac{3}{2})\frac{5}{2}^{-}$	N(1675	$5)^{100}$	$\Lambda(1830)$) ¹⁰⁰	$\Sigma(1775)^{100}$	$\Sigma(1950)^{100}$
		D					
	(LS)J	P					
	$(0\frac{3}{2})\frac{3}{2}$	$\Delta(12$	32) ¹⁰⁰	$\Sigma(1385)$) ¹⁰⁰	$\Xi(1530)^{100}$	$\Omega(1672)^{100}$
	$(0\frac{3}{2})\frac{3}{2}$	$- \Lambda(16)$	00) ¹⁰⁰	S (1690))99		
	$(1\frac{1}{2})\frac{1}{2}$	$\Delta(16$	$20)^{100}$	Σ(1750))94	-0.08	
	$(1\frac{1}{2})\frac{3}{2}$	$\Delta(17)$	$(00)^{100}$	-0.76			

K. S. Choi, W. Plessas, R. F. Wagenbrunn : Phys. Rev. D 82, 014007 (2010)

T. Melde, W. Plessas and B. Sengl: Phys. Rev. D 77, 114002 (2008) and Particle Data Group (PDG) 2010

Axial Form Factors of N(1440) and N(1710)

Motivation	Formalism	Results	Summary		HADRONS GRAZ
Summa	ary				
Perf	ormed a coi	nsistent stu	dy of g_A fo	or N and N*	

within the RCQMs.

- Covariant predictions of RCQMs show generally considerable relativistic effects and describe experimental data well.
- In cases, where no experiments exist, there is reasonable agreement with lattice QCD results.
- The issue regarding chiral symmetry restoration remains open; the sizes of the $\mathcal{G}A$ for baryon resonances are consistent with a recent classification into flavor multiplets.
- It will be interesting to extend these relativistic studies to electromagnetic and weak transition form factors.

Motivation	Formalism	Results	Summary	HADRONS	UNI GRAZ
------------	-----------	---------	---------	---------	-------------

Nucleon Spectra

Left levels - OGE : L. Theussl, R.F. Wagenbrunn, B. Desplanques, and W. Plessas: Eur. Phys. J. A 12, 91 (2001) Middle levels - psGBE : L.Ya. Glozman, W. Plessas, K. Varga, and R.F. Wagenbrunn: Phys. Rev. D 58, 094030 (1998) Right levels - EGBE : K.Gantschnig, R.Kainhofer, W. Plessas, B. Sengl, and R.F. Wagenbrunn: Eur. Phys. J. A 23, 507 (2005) Green zones - Experimental data in PDG (2010)